Supported Organometallics. Highly Electrophilic **Cationic Metallocene Hydrogenation and Polymerization Catalysts Formed via Protonolytic Chemisorption on Sulfated Zirconia**

Hongsang Ahn and Tobin J. Marks*

Department of Chemistry, Northwestern University Evanston, Illinois 60208-3113

Received July 20, 1998

Studies of homogeneous Ziegler-Natta catalysis have shown that highly electrophilic cationic species (e.g., A; L = cyclopentadienyl-type ancillary ligand) can be produced using organo-Lewis acidic (alkide/hydride abstraction)^{1,2} and Brønsted acidic (M-alkyl/H protonolysis) cocatalysts.^{1,3} In constrast, supported Ziegler-Natta catalyst activation has been exclusively confined to intrinsically Lewis acidic surfaces (e.g., **B**)^{4,5a-c} or to organo-

Lewis acid activated surfaces^{5a,d-f} since chemisorption of metallocenes on conventional Brønsted acid surfaces results in catalytically inert μ -oxo species (e.g., C) via M-CH₃ protonolysis.^{4b-d} Recently, sulfated zirconia and related solid acids have received considerable attention because of their proposed "superacidity", i.e., stronger Brønsted acidity than 100% H₂SO₄ (Hammett $H_0 = -12$), and high catalytic activity for various hydrocarbon transformations.⁶ Two interesting questions therefore arise: First, would solid Brønsted acids such as sulfated zirconia activate Ziegler-Natta-type catalysts, and second, what type of interaction can occur between the organometallic adsorbate and

Inimale, R., Riege, B., Walmoudi, X. M. Inger, Chem. Luc. Eng. for Tailor-Made Polyolefins; Elsevier: Tokyo, 1994.
(2) (a) Chen, Y.-X.; Metz, M. V.; Li, L.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1998, 120, 6287–6305. (b) Deck, P. A.; Beswick, C. L.; Marks, T. J. J. Am. Chem. Soc. 1998, 120, 1772–1784. (c) Sun, Y.; Spence, R. E. V. H.; Piers, W. E.; Parvez, M.; Yap, G. P. A. J. Am. Chem. Soc. 1997, 119, 5132–5143 and references therein. (d) Baumann, R.; Davis, W. M.; Schrock, R. R. J. Am. Chem. Soc. 1997, 119, 3830–3831. (e) Wang, Q.; Gillis, D. J.; Quyoum, R.; Jeremic, D.; Tidoret, M.-J.; Baird, M. C. J. Organomet. Chem. 1997, 527, 7–14. (f) Chen, Y.-X.; Stern, C. L.; Yang, S.; Marks, T. J. J. Am. Chem. Soc. 1996, 118, 12451–12452. (g) Yang, X.; Stern, C. L.; Marks, T. J. J. Am Chem. Soc. 1994, 116, 10015–10031.
(3) (a) Giardello, M. A.; Eisen, M. S.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1995, 117, 12114–12129. (b) Jia, L.; Yang, X.; Stern, C. L.; Marks, T. J. Organometallics 1994, 13, 3755–3757. (c) Hlatky, G. G.; Eckman, R. R.; Turner, H. W. Organometallics 1991, 10, 840–842. (e)

Yang, X.; Stern, C. L.; Marks, T. J. Organometallics 1991, 10, 840-842. (e) Turner, H. W.; Hlatky, G. G. PCT Int. Appl. WO 88/05793 (Eur. Pat. Appl. EP 211004, 1988). (f) Lin, Z.; LeMarechal, J. F.; Sabat, M.; Marks, T. J. J. Am. Chem. Soc. **1987**, 109, 4127–4129.

 Am. Chem. Soc. 1907, 109, 4121–4129.
 (4) (a) Eisen, M. S.; Marks, T. J. J. Mol. Catal. 1994, 86, 23–50. (b) Marks, T. J. Acc. Chem. Res. 1992, 25, 57–65. (c)Eisen, M. S.; Marks, T. J. J. Am. Chem. Soc. 1992, 114, 10358–10368. (d) Gillespie, R. D.; Burwell, R. L., Dr.; Marks, T. J. Langmuir 1990, 6, 1465–1477. (e) Dahmen, K. H.; Hedden,
 D.; Burwell, R. L., Jr.; Marks, T. J. Langmuir 1988, 4, 1212–1214.
 (5) (a) Ribeiro, M. R.; Deffieux, A.; Portela, M. F. Ind. Eng. Chem. Res.

S.; Kelly, W. M.; Holden, D. A. Macromolecules, 1992, 25, 1780-1785.

(6) For recent reviews, see: (a) Song, X.; Sayari, A. Catal. Rev. Sci. Eng. **1996**, *38*(3), 329–412 and references therein. (b) Corma, A. Chem. Rev. 1995, 95, 559–614. (c) Clearfield, A.; Serrette, G. P. D.; Khazi-Syed, A. H. Catal. Today 1994, 20, 295–311. (d) Arata, K. Adv. Catal. 1990, *37*, 165–211.

such an oxide surface? We report here the formation of highly electrophilic metallocene species on "superacidic" strong Brønsted sites via metal-carbon bond protonolysis and initial observations on adsorbate α -olefin/arene hydrogenation and polymerization activities.

Zirconia $(ZR)^7$ and zirconia/tungsten-oxide $(ZRW)^8$ were prepared by modifications of literature procedures. Sulfated zirconia (ZRSO) was prepared by thermal decomposition of Zr-(SO₄)₂•4H₂O (Aldrich, 99.99%) at 730 °C for 5 h in flowing dry O₂ (100 mL/min).⁹ These ZRSO samples were then separately activated at 300, 400, and 740 °C under high vacuum (5 \times 10⁻⁶ Torr), yielding supports designated ZRS300, ZRS400,10 and ZRS740, respectively.¹¹ Next, Cp₂Zr(CH₃)₂ (1)^{12a} and Cp'Zr(CH₃)₃ $(2)^{12b}$ [Cp'= η^{5} -(CH₃)₅C₅] were adsorbed from pentane solution onto these solid acids using the rigorously anaerobic techniques described elsewhere.4a,c

Catalytic hydrogenations using the supported organozirconium catalysts were studied in the rapidly mixed slurry hydrogenation apparatus described previously.¹³ Turnover frequencies in molecules substrate hydrogenated per Zr atom h⁻¹ are given in Table 1.¹⁴ The ordering of 1-hexene hydrogenation rates as a function of support and calcination temperature (entries 1-5)¹⁵ can be approximately correlated with known strong Brønsted acid surface site populations.^{6,11} Complex 2, which is more coordinatively unsaturated/less sterically hindered than 1, exhibits a dramatic enhancement in hydrogenation activity when supported on ZRS400; for example, it mediates rapid hydrogenation of benzene at 25 °C, 1 atm H₂.¹⁶ Rates are zero-order in [arene] up to \sim 20% conversion and critically affected by the arene substitution pattern

area = 35 m²/g; XRD: monoclinic phase). (8) Hino, M.; Arata, K. J. Chem. Soc., Chem. Commun. **1988**, 1259–1260. (9) Platero, E. E.; Mentruit, M. P. Catal. Lett. **1995**, 30, 31–39.

(10) (a) Surface and textural properties of ZRS400: surface area = 110 m^2/g ; most frequent pore radius = 3.5 nm (BET); tetragonal form: monoclinic form = 40: 60 (XRD). The "superacidic sites" are associated with the tetragonal phase. See: (b)Vera C. R.; Parera, J. M. J. Catal. 1997, 165, 254-262. (c) Corma, A.; Fornés, V.; Juan-Rajadell, M. I.; López Nieto, J. M. Appl. Catal., A 1994, 116, 151-163.

(11) (a) Moterra, C.; Cerrato, G.; Pinna, F.; Signoretto, M.; Strukul, G. J. Catal. 1994, 149, 181-188. (b) ZRSO thermogravimetric analysis indicates significant sulfate desorption at ≥720 °C. (c) All ZRSO samples (ZRS300, ZRS400, ZRS740) exhibit strong, IR-active S=O stretching bands (1395 cm⁻¹). In the v_{OH} region, (i) ZRS300 exhibits three bands, 3758 cm⁻¹ ("weak-acidic sites", terminal Zr–OH), 3650 cm⁻¹ ("strong acid sites"), and 3300 cm⁻¹ (br, "bridged hydroxyl groups"),⁹ (ii) ZRS740 exhibits no v_{OH} bands. Thus, ZRS740 exhibits no v_{OH} bands. Thus, ZRS400 contains both strong Brønsted and Lewis acid sites, ZRS300 contains strong Brønsted/Lewis acid sites and weak Brønsted acid sites, whereas ZRS740 contains mostly Lewis sites. Note the 3300 cm⁻¹ (br) band has also been assigned to superacidic sites: Armendariz, H.; Sierra, C. S.; Figueras, F.; Coq, B.; Mirodatos, C.; Lefebvre, F.; Tichit, D. J. Catal. 1997, 171, 85-92

(12) (a) Wailes, P. C.; Weigold, H.; Bell, A. P. J. Organomet. Chem. 1972, 34, 105-164. (b) Wolczanski, P. T.; Bercaw, J. E. Organometallics 1982, 1, 793-799

(13) (a) Roesky, P. W.; Denninger, U.; Stern, C. L.; Marks, T. J. *Organometallics*, **1997**, 16, 4486-4492. (b) Harr, C. M.; Stern, C. L.; Marks, T. J. *Organometallics* **1996**, *15*, 1765–1784.

(14) Metal coverage is based on parallel ICP assays with $Cp'_2Hf(CH_3)_2$ indicating that $Cp'_2Hf(CH_3)_2/ZRS400$ contains 0.81 Hf atom/nm² and 3.55 S atom/nm2

(15) Precise activity measurements are complicated somewhat by competing substrate isomerization yielding cis- and trans-2-hexene. Nt values were obtained from initial 20% conversion during which time the isomerization is minor.

(16) (a) Product identity was confirmed by GC/MSD and ¹H and ¹³C NMR analysis of the hydrogenation product. (b) The $^{13}\mathrm{C}$ NMR spectrum of the C₆D₆ hydrogenation product confirms that C₆D₆H₆^{4c} is formed exclusively with no evidence of C-H/C-D scrambling:

 δ 26.9(C) ($J_{C-D} = 18.9$ Hz, $J_{C-H} = 125.0$ Hz).

10.1021/ja9825682 CCC: \$15.00 © 1998 American Chemical Society Published on Web 12/30/1998

^{(1) (}a) Jordan, R. F. Metallocene and Single Site Olefin Catalysis, J. Mol. Catal. 1998, 128 (special issue) and references therein. (b) Kaminsky, W.; Catal. 1998, 128 (spectal issue) and references therein. (b) Kalminsky, w.,
Arndt, M. Adv. Polym. Sci. 1997, 127, 144–187. (c) Bochmann, M. J. Chem.
Soc., Dalton Trans. 1996, 255–270. (d) Brintzinger, H. H.; Fischer, D.;
Mülhaupt, R.; Rieger, B.; Waymouth, R. M. Angew. Chem., Int. Ed. Engl.
1995, 34, 1143–1170. (e) Soga, K.; Terano, M., Eds. Catalyst Design for

⁽⁷⁾ Zirconia (ZR) was synthesized via hydrolysis of ZrOCl₂(BET surface

Table 1. Olefin/Arene Hydrogenation Catalyzed by Supported Organozirconium Complexes at 25.0 (1) °C, $P_{H_2} = 1 \text{ atm}^a$

			-	
entry	complex	solid acid	substrate	$N_{\rm t},^b {\rm h}^{-1}$
1	$Cp_2Zr(CH_3)_2(1)$	ZR	1-hexene	$\sim 0^{c}$
2	1	ZRW	1-hexene	${\sim}0$
3	1	ZRS300	1-hexene	32^{d}
4	1	ZRS400	1-hexene	35^{d}
5	1	ZRS740	1-hexene	7^d
6	$Cp'Zr(CH_3)_3(2)$	ZRS400	1-hexene	2840
7	2	ZRS400	benzene	970^{e}
8	2	ZRS400	toluene	14^{e}
9	2	ZRS400	<i>p</i> -xylene	~ 0

^{*a*} In a typical experiment,¹³ 50 mg of catalyst ([Zr] = 7.4×10^{-3} mmol) was agitated in 0.020 mL of 1-hexene (1.6×10^{-1} mmol) + 1.0 mL of octane solution (entries 1–5) or 0.60 mL of neat arene (entries 6–8) at a speed of 2000 rpm. ^{*b*} N_t values measured while the pressure drop in the system was <1%. All H₂ uptake results were corrected for substrate vapor pressure. ^{*c*} In NMR scale experiments, hexane was detected by ¹H NMR after 2 days at 70 °C. ^{*d*} See ref 15. ^{*e*} Turnover frequency independent of [arene] for <20% conversion.

(entries 7–9), in contrast to more conventional catalysts.^{17,18b,19a,b} These substrate substituent effects suggest that the molecular surface active centers are sterically hindered. To our knowledge, the benzene hydrogenation activity of **2**/ZRS400 at 25.0(1) °C, 1 atm H₂ rivals or exceeds that of the most active arene hydrogenation catalysts known.^{18,19} From poisoning experiments with degassed water, ~65% of **2**/ZRS400 sites are determined to be of catalytic importance in benzene hydrogenation, vs ~4% for Cp'₂Th(CH₃)₂/dehydroxylated alumina.^{4d} **1**/ZRS400 and **2**/ZRS400 also catalyze ethylene homopolymerization with preliminary 25 °C activity measurements indicating 1.5 × 10³ and 4.0 × 10⁴g PE/mol Zr·h•atm C₂H₄, respectively.

Insight into the metallocene chemisorption process on sulfated zirconia is provided by ¹³C CPMAS NMR spectroscopy with anaerobic sampling and assignment techniques described elsewhere and using Cp'₂Th(¹³CH₃)₂ and Cp₂Zr(¹³CH₃)₂ as model adsorbates.^{4b,d,20a-c} The ¹³C CPMAS NMR spectrum of Cp'₂Th-(¹³CH₃)₂/ZRS400 (Figure 1A) exhibits resonances assignable to the Cp' ligands (δ 127.6, 9.3), to the labeled Th⁻¹³CH₃⁺ functionality (δ 72.8) and to μ -oxo species Cp'₂Th(¹³CH₃)-O-(C; δ 54.2). Interestingly, δ Th $^{-13}$ CH $_3^+ = \delta$ 72.8 on ZRS400 is at significantly lower field than is associated with analogous "cation-like" species on other supports and is suggestive of a more electron-deficient species.4b,20a-c Two weak additional resonances are observed at δ 32.6 and -0.2. Although they cannot be rigorously assigned, the chemical shifts correlate with transferred methide groups i.e, $S_{surface}$ -¹³CH₃ (cf., HOS(O)₂CH₃, δ 39.4) and Zr_{surface}-¹³CH₃, respectively.²⁰ However, both signals are very weak in intensity compared to the Th–CH₃ resonance ($\leq \sim 5\%$).

(20) This upfield transferred methyl group feature agrees with those on other metal oxides. See: (a) Finch, W. C.; Gillespie, R. D.; Hedden, D.; Marks, T. J. J. Am. Chem. Soc. **1990**, 112, 6221–6232. (b) Toscano, P. J.; Marks, T. J. Langmuir **1986**, 2, 820–823. (c) Toscano, P. J.; Marks, T. J. J. Am. Chem. Soc. **1985**, 107, 653–659.

Figure 1. ¹³C CPMAS NMR spectra (75.4 MHz) of (A) $Cp'_2Th(^{13}CH_3)_2/ZRS400$ (3430 scans, repetition time = 2.5 s, contact time = 7.1 ms, spinning speed = 6.3 kHz) and (B) $Cp_2Zr(^{13}CH_3)_2/ZRS400$ (9250 scans; repetition time = 1.2 s, contact time = 0.58 ms, spinning speed = 6.2 kHz).

Therefore, methide transfer to the surface (**B**) is not as important on sulfated zirconia as on dehydroxylated alumina, which exhibits an intense of Al_{surface}⁻¹³CH₃ resonance (δ -12), almost equal in intensity to the Th⁺-1³CH₃ signal.^{20a,c} Figure 1B presents the ¹³C CPMAS NMR spectrum of Cp₂Zr(¹³CH₃)₂/ZRS400. Only two resonances are detected at δ 113.8 (Cp ligand) and δ 36 (Zr– ¹³CH₃⁺) with a small shoulder at ca. δ 20 assignable to a μ -oxo species C,^{4b,d} and a transferred methide group resonance is not observable. Similar observations are made for 2/ZRS400.²¹ These spectroscopic results argue that sulfated zirconia Brønsted acid sites generate cationic adsorbate species via metal–carbon bond protonolysis (eq 1). This proposed pathway is supported by the

$$OH + Cp_2Zr(^{13}CH_3)_2 \xrightarrow{Cp_2Zr^{13}CH_3} (1)$$

following observations: (1) the correlation of 1/ZRSx catalytic activities (entries 3–5 in Table 1) with the density of support Brønsted acid sites,^{6,11} (2) after impregnation of Cp₂Zr(CH₃)₂ on ZRS400, the v_{OH} transitions in the infrared (3650, 3300 cm⁻¹) disappear, accompanied by a shift of $v_{S=O}$ from 1395 to 1360 cm⁻¹, and (3) methane is detected in the ¹H NMR spectrum (δ 0.15) of a Cp₂Zr(CH₃)₂+ ZRS400 mixture in C₆D₆. Observations^{20b,22} that homogeneous and heterogeneous acids with oxo counteranions such as CF₃SO₃⁻ ($H_o = -14.1$) and ZRW ($H_o \leq -14.5^8$), respectively, afford catalytically marginal species suggests that sulfated zirconia contains Brønsted acid sites stronger than $H_o = -14$ and/or having extensively charge-delocalized, weakly coordinating conjugate base anionic sites (e.g., **D**).

Acknowledgment. Financial support by the DOE (Grant No. DE-FG02-86ER13511) is gratefully acknowledged. H.A. thanks Dr. E. Rivera for advice on ¹³C CPMAS spectroscopy.

Supporting Information Available: Details of the experimental procedures for physical, analytical, and catalytic measurements (4 pages, print/PDF). See any current masthead page for ordering information and Web access instructions.

JA9825682

⁽¹⁷⁾ Keane, M. A.; Patterson, P. M. J. Chem. Soc., Faraday. Trans. 1996, 92, 1413–1421.

^{(18) (}a) Bleeke, J. R.; Muetterties, E. L. J. Am. Chem. Soc. 1981, 103, 556–564. (b) Muetterties, E. L.; Bleeke, J. R. Acc. Chem. Res. 1979, 12, 324–331. (c) Bennett, M. A.; Huang, T.-N.; Smith, A. K.; Turney, J. W. J. Chem. Soc., Chem. Commun. 1978, 582–583.
(19) (a) Gao, H.; Angelici, R. J. J. Am. Chem. Soc. 1997, 119, 6937–6938. (b) Corma, A.; Iglesias, M.; Sanchez, F. Catal. Lett. 1995, 32, 313–6120.

^{(19) (}a) Gao, H.; Angelici, R. J. J. Am. Chem. Soc. 1997, 119, 6937–6938. (b) Corma, A.; Iglesias, M.; Sanchez, F. Catal. Lett. 1995, 32, 313–318. (c) Siegel, S. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 8, Chapter 31. (d) Timmer, K.; Thewissen, D. H. M. W.; Meinema, H. A.; Bulten, E. J. Recl. Travl. Chim. Pays-Bas 1990, 109, 87–92. (e) Pajonk, G. M.; Teichner, S. J. In Catalytic Hydrogenation; Cervene, L., Ed.; Elsevier: Amsterdam, 1986; Chapter 8.

⁽²¹⁾ Resonances at δ 123, 8.2 (Cp' Ligand) and 51.4 (Zr-¹³CH₃⁺). The latter resonance disappears upon hydrogenation, and an IR feature at 1654 cm⁻¹, tentatively assigned to a Zr-H⁺ species^{2g} appears.

⁽²²⁾ Toscano, P. J.; Marks, T. J., unpublished observations.